首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1262篇
  免费   53篇
  国内免费   2篇
化学   948篇
晶体学   17篇
力学   7篇
数学   27篇
物理学   318篇
  2021年   9篇
  2020年   10篇
  2019年   12篇
  2018年   8篇
  2016年   24篇
  2015年   25篇
  2014年   30篇
  2013年   49篇
  2012年   38篇
  2011年   82篇
  2010年   36篇
  2009年   41篇
  2008年   55篇
  2007年   74篇
  2006年   61篇
  2005年   54篇
  2004年   63篇
  2003年   45篇
  2002年   53篇
  2001年   40篇
  2000年   35篇
  1999年   21篇
  1998年   6篇
  1997年   10篇
  1996年   20篇
  1995年   10篇
  1994年   17篇
  1993年   13篇
  1992年   16篇
  1991年   16篇
  1990年   19篇
  1989年   15篇
  1988年   20篇
  1987年   16篇
  1986年   8篇
  1985年   14篇
  1984年   23篇
  1983年   13篇
  1982年   17篇
  1981年   13篇
  1980年   21篇
  1979年   20篇
  1978年   25篇
  1977年   13篇
  1976年   18篇
  1975年   9篇
  1974年   17篇
  1973年   9篇
  1969年   8篇
  1968年   8篇
排序方式: 共有1317条查询结果,搜索用时 437 毫秒
61.
Abstract— Zn-tetraphenylporphyrin (ZnTPP), solubilized in non-ionic surfactant micelles, was found to sensitize photoreductions of some sodium anthraquinonesulfonatesz in the presence of ascorbic acid under anaerobic conditions. The reaction rate was increased by the addition of an anionic surfactant, while retardation was observed with a cationic surfactant. The pH-reaction rate profiles showed maxima located in the order corresponding to pKa-values for the semiquinone of each anthraquinone-sulfonate. A reaction scheme involving the formation of ZnTPP+ at the primary step, followed by back-reduction with ascorbic acid, is proposed. The reaction scheme is in good agreement with the results of flash photolysis. The surfactant micelles are suggested to aid the charge-separation between the ionic species just after the redox reaction involving the photoexcited ZnTPP and anthraquinonesulfonates.  相似文献   
62.
In the gas phase, we have successfully synthesized organometallic clusters, Mn(benzene)m (M=3d transition metal atoms), by using a laser vaporization method. The measurements of mass spectra and ionization energies (Ei) have revealed that the organometallic clusters can take two types of structures; layered sandwich structures (m = n + 1) and metal clusters saturatedly covered with benzenes. For early transition metals of Sc, Ti, and V, only the multiple decker sandwich structure clusters were preferentially produced, in which benzene and metal atoms are alternately piled up. For late transition metals of Co and Ni, the metal clusters saturatedly surrounded by benzenes were also produced as well as the sandwich clusters. Furthermore, the Eis of M1(benzene)2 (M = Sc-Ni) were systematically measured and their electronic properties will be discussed.  相似文献   
63.
We recently proposed a technique for preparing monodisperse emulsions with a coefficient of variation below 5% from a silicon array of micrometer-sized channels perpendicular to the plate surface, named a straight-through microchannel (MC). This study involved three-dimensional computational fluid dynamics (CFD) simulations to calculate the formation of an oil-in-water (O/W) emulsion droplet from straight-through MCs with circular and elliptic cross sections. The CFD results demonstrated that the oil phase that passed through the elliptic MCs exceeding a threshold aspect ratio between 3 and 3.5 was cut off spontaneously into a small droplet with a diameter of approximately 40 microm. Sufficient space for water at the channel exit had to be maintained for successful droplet formation. The formation and shrinkage of a neck inside the channel caused an increased pressure difference inside the channel and an increased velocity value near the neck. The pressure and velocity values at the neck drastically changed, and the neck was cut off instantaneously just before the completion of droplet formation. This process was triggered by a gradually increased pressure difference between the circular neck and inflating oil phase. The findings obtained in this paper provide useful numerical and visual information about the droplet formation phenomena from the straight-through MCs. The CFD results were verified by the experimental results, showing that the CFD approach can help design a suitable channel structure.  相似文献   
64.
65.
The interactions between biologically important enzymes and drugs are of great interest. In order to address some aspects of these interactions we have initiated a program to investigate enzymedrug interactions. Specifically, the interactions between one of the isozymes of carbonic anhydrase and a family of drugs known as sulfonamides have been studied using computational methods. In particular the electrostatic free energy of binding of carbonic anhydrase II with acetazolamide, methazolamide,p-chlorobenzenesulfonamide,p-aminobenzenesulfonamide and three new compounds (MK1, MK2, and MK3) has been computed using finite-difference Poisson-Boltzmann (FDPB) [1] method and the semimacroscopic version [2, 3] of the protein dipole Langevin dipole (PDLD) method [4]. Both methods, FDPB and PDLD, give similar results for the electrostatic free energy of binding even though different charges and different treatments were used for the protein. The calculated electrostatic binding free energies are in reasonable agreement with the experimental data. The potential and the limitation of electrostatic models for studies of binding energies are discussed.  相似文献   
66.
In the framework of the Hückel MO approximation, the differences in total binding energy between a given molecule and the corresponding distorted Kekulé-type structure are calculated for a variety of benzenoid hydrocarbons. The total binding energy is assumed to be given by the sum of the -electron and -electron binding energies. It is shown that there is a good linear relationship between the calculated differences in total binding energy and the -electron delocalization energies (DE) as obtained by using the simple Hückel MO method. This provides a physical basis for the use of the -electron DE as a theoretical index to the empirical resonance energy (RE). Further, by examining the changes in -electron binding energy between a given molecule and the corresponding distorted Kekulé-type structure, it is concluded that in benzenoid hydrocarbons the main contributor to the RE is not the -electron DE but the compressional energy of bonds.  相似文献   
67.
Polypropylene (PP)/Ti-MCM-41 nanocomposites were prepared by isospecific propylene polymerization with Ti-MCM-41/Al(i-C4H9)3 catalyst. The cross polarization/magic angle spinning (CP/MAS) 13C NMR spectrum of the composite was similar to that of the conventional isotactic PP, and the decrease in the pore volume of Ti-MCM-41 in the nanocomposites, as measured by N2 adsorption, was consistent with the value calculated from the weight loss in the thermogravimetric analysis (TGA) curve; both these facts attest to propylene polymerization within the mesopores of Ti-MCM-41. Alkali treatment followed by extraction with o-dichlorobenzene allows us to extract the confined PP out of the Ti-MCM-41 mesopores. Although the PP/Ti-MCM-41 nanocomposites do not exhibit a crystalline melting point, the same PP when extracted from the mesopores showed a clear melting point at 154.7 °C; this indicates that the crystallization of PP confined in mesopores is strongly hindered. For the PP polymerized within the confinement, the molecular weight (Mw) and molecular weight distribution (Mw/Mn) were 84,000 and 4.3, respectively; these values were considerably smaller than those of the PP polymerized concurrently outside the Ti-MCM-41 mesopores (Mw = 200,000–450,000, Mw/Mn = 40–75). Therefore, the confinement also has a marked effect on the molecular weight of the PP. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3324–3332, 2003  相似文献   
68.
A great number of studies of polyelectrolyte complexes have been carried out by various investigators; most of them concentrated on the reaction between oppositely charged polyelectrolytes [1-3]. The structure and properties of the resultant complexes have been investigated to a lesser extent, and the understanding of this new class of polymer materials is still insufficient. Thus, we have been investigating the sorption of water vapor by the complexes and the morphological changes caused by this sorption [4,5].  相似文献   
69.
A series of the octapalladium chains supported by meso-Ph2PCH2P(Ph)CH2P(Ph)CH2PPh2 (meso-dpmppm) ligands, [Pd8(meso-dpmppm)4(L)2](BF4)4 (L=none ( 1 ), solvents: CH3CN ( 2 a ), dmf ( 2 b ), dmso ( 2 c ), RN≡C: R=Xyl ( 3 a ), Mes ( 3 b ), Dip ( 3 c ), tBu ( 3 d ), Cy ( 3 e ), CH3(CH2)7 ( 3 f ), CH3(CH2)11 ( 3 g ), CH3(CH2)17 ( 3 h )) and [Pd8(meso-dpmppm)4(X)2](BF4)2 (X=Cl ( 4 a ), N3 ( 4 b ), CN ( 4 c ), SCN ( 4 d )), were synthesized by using 2 a as a stable good precursor, and characterized by spectroscopic (IR, 1H and 31P NMR, UV-vis-NIR, ESI-MS) measurements and X-ray crystallographic analyses (for 1 , 2 a , b , 3 a , b , e , f , 4 a – d ). On the basis of DFT calculations on the X-ray determined structure of 2 b ( [2b-Pd8]4+ ) and the optimized models [Pd8(meso-Ph2PCH2P(H)CH2P(H)CH2PH2)4(CH3CN)2]4+ ( [Pd8Ph8]4+ ) and [Pd8(meso-H2PCH2P(H)CH2P(H)CH2PH2)4(CH3CN)2]4+ ( [Pd8H8]4+ ), with and without empirically calculating dispersion force stabilization energy (B3LYP-D3, B3LYP), the formation energy between the two Pd4 fragments is assumed to involve mainly noncovalent interactions (ca. −70 kcal/mol) with four sets of interligand C−H/π interactions and Pd⋅⋅⋅Pd metallophilic one, while electron shared covalent interactions are almost canceled out within the Pd8 chain. All the compounds isolated are stable in solution and exhibit characteristic absorption at ∼900 nm, which is assignable to a spin allowed HOMO to LUMO transition, and shows temperature dependent intensity change with variable absorption coefficients presumably due to coupling with some thermal vibrations. The structures and electronic states of the Pd8 chains are found finely tunable by varying the terminal capping ligands. In particular, theoretical calculations elucidated that the HOMO-LUMO energy gap is systematically related to the central Pd−Pd distance (2.7319(6)–2.7575(6) Å) by two ways with neutral ligands L ( 1 , 2 , 3 ) and with anionic ligands X ( 4 ), which are reflected on the NIR absorption energy of 867–954 nm. The isocyanide terminated Pd8 complexes ( 3 ) further reacted with excess of RNC (6 eq) to afford the Pd4 complexes, [Pd4(meso-dpmppm)2(RNC)2](BF4)2 ( 13 ), and the cyclic voltammograms of 2 a (L=CH3CN), 3 , and 13 (R=Xyl, Mes, tBu, Cy) demonstrated wide range redox behaviors from 2{Pd4}4+ to 2{Pd4}0 through 2{Pd4}2+↔{Pd8}4+, {Pd8}3+, and {Pd8}2+ strings. The oxidized complexes, [Pd4(meso-dpmppm)2(RNC)3](BF4)4 ( 16 ), were characterized by X-ray analyses, and the two-electron reduced chain of [Pd8(meso-dpmppm)4](BF4)2 ( 7 ) was analyzed by spectroscopic and electrochemical techniques and DFT calculations. Reactions of 2 a with 1 equiv. of aromatic linear bisisocyanide (BI) in CH2Cl2 deposited insoluble coordination polymers, {[Pd8(meso-dpmppm)4(BI)](BF4)4}n ( 5 ), and interestingly, they were soluble in acetonitrile, 31P{1H} and 1H DOSY NMR spectra as well as SAXS curves suggesting that the coordination polymers may exist in acetonitrile as dynamically 1D self-assembled coordination polymers comprising ca. 50 units of the Pd8 rod averaged within the timescale.  相似文献   
70.
Collagen is a major component of the extracellular matrix, and collagen gels have been used as cell scaffolds. We previously prepared gold nanoparticle (AuNP)-embedded collagen gels (AuCol) to serve as cell scaffolds that were sensitive to visible light. We performed single cell detachment from this cell scaffold using a microscope equipped with a laser irradiation system. In the present study, we adjusted hydrogel thickness and AuNP concentration in AuCol, with a goal of improving cell detachment efficiency. Thin hydrogels became blackened after the laser irradiation, and thick hydrogels with high AuNP concentrations were not permeable to the laser light. We, therefore, prepared bilayer gels, composed of AuCol as the upper layer and intact collagen gel (Col) as the bottom layer. These bilayer gels allowed more effective cell detachment, because they were thick and optically transparent. Our results indicated that an AuCol/Col ratio of 2 enabled the highest cell detachment efficiency. Essentially, no cell damage was observed in our system, suggesting that this is a cell-friendly single cell separation system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号